Characterizing application-architecture co-design by suitability functions


Related outputs

Application Performance of Physical System Simulations

Decentralised Workload Scheduler for Resource Allocation in Computational Clusters
The 30th Anniversary of the Supercomputing Conference: Bringing the Future Closer - Supercomputing History and the Immortality of Now


Transfer Cost of Virtual Machine Live Migration in Cloud Systems


Application-Specific Energy Modeling of Multi-Core Processors


New Frontiers in Energy-Efficient Computing


Sensor Intelligence for Tackling Energy-Drain Attacks on Wireless Sensor Networks


AGOCS – Accurate Google Cloud Simulator Framework


Context-aware Approach for Determining the Threshold Price in Name-Your-Own-Price Channels


A Meta-Heuristic Load Balancer for Cloud Computing Systems


Towards an Application-Specific Thermal Energy Model of Current Processors


Workload Schedulers - Genesis, Algorithms and Comparisons


Scientific Grand Challenges: Toward Exascale Supercomputing and Beyond


Distributed Agent-Based Load Balancer for Cloud Computing


Context-Aware Framework for Performance Tuning via Multi-action Evaluation


Performance Tuning of Database Systems Using a Context-aware Approach


A few notes on Amdahl's law

Computing laws: origins, standing, and impact

System evolution for unknown context through multi-action evaluation

Topic 2: performance prediction and evaluation

Cloud adoption issues: interoperability and security

Smart computational grids: infrastructure for tackling global integration challenges

Computing in Asia: a sampling of recent success stories

Hybrid cloud adoption issues are a case in point for the need for industry regulation of cloud computing
Getov, Vladimir 2012. Hybrid cloud adoption issues are a case in point for the need for industry regulation of cloud computing. Business Computing World.

Process-driven biometric identification by means of autonomous grid components

Security as a service in smart clouds: opportunities and concerns

Plenary panel description: challenges towards the global adoption of cloud computing

WMIN-MOBILE: a mobile learning platform for information and service provision

CoreGRID/ERCIM workshop on grids, clouds and P2P computing: CGWS2011

Codesign for systems and applications: charting the path to exascale computing

Navigating the cloud computing landscape: technologies, services, and adopters

From invisible grids to smart cloud computing

Component-oriented approaches for software development in the extreme-scale computing era

Software development productivity: challenges and future trends

Safety and liveness of component-oriented protocols: a feasibility study

Safety and liveness of component-oriented protocols: a feasibility study

Extreme-scale computing--where 'just more of the same' does not work

GCM: a grid extension to Fractal for autonomous distributed components

Integrating autonomic grid components and process-driven business applications

Temporal specification and deductive verification of a distributed component model and its environment

State-based behavior specification for GCM systems

Special roundtable discussion: 70 years electronic digital computing that changed the world

e-Science: the added value for modern discovery

Dynamic reconfiguration of GCM components

HLA component based environment for distributed multiscale simulations

Dynamic service-based integration of mobile clusters in grids

Advanced Grid programming with components: a biometric identification case study

Domain-specific metadata for model validation and performance optimisation

A component-based integrated toolkit

Transaction-oriented simulation in ad hoc grids: design and experience

Dynamic service-based integration Of mobile clusters in Grids
Evaluation of dynamic clustering architecture for utilising mobile resources

Integrated framework for development and execution of component-based Grid applications

Design and implementation of a hybrid P2P-based Grid resource discovery system

Methodology for component-based development of grid applications

Behavioural model of component-based Grid environments

Automata-based formal specification of stateful systems

Automata based formal specification of stateful systems

Proceedings of the CoreGRID Workshop on Grid Systems, Tools and Environments, 1st December 2006, Sophia-Antipolis, France

Problem solving environment for distributed interactive applications

Domain-specific metadata for model validation and performance optimisation

Design support for componentising and grid-enabling scientific applications

Letters to the editor

Corrections

Proceedings of the 2007 symposium on Component and framework technology in high-performance and scientific computing

Specification and verification of reconfiguration protocols in grid component systems

Componentising a scientific application for the grid
Mapping "heavy" scientific applications on a lightweight grid infrastructure

Security models for lightweight grid architectures

Lightweight grid platform: design methodology

Specification and Verification of Reconfiguration Protocols in Grid Component Systems

A metadata extracting tool for software components in grid applications

Dependability in hybrid grid systems: a virtual clusters approach

Specification and verification of reconfiguration protocols in grid component systems

Towards building a generic grid services platform: a components-oriented approach

An architecture for a portable grid-enabled engine

A lightweight platform for integration of mobile devices into pervasive grids

Integrating mobile devices into the grid: design considerations and evaluation

Developing grid services with Jini and JXTA

Computational grid and web services: concepts, functionalities and comparisons

Improving quality of service in application clusters

Performance evaluation of hybrid parallel programming paradigms

Using Java for plasma PIC simulations
Mixed language high-performance computing for plasma simulations  

Intelligent fault tolerant architecture for cluster computing: a high level overview  

Intelligent architecture for automatic resource allocation in computer clusters  

Improving quality of service in application clusters  

Cluster infrastructure for biological and health related research  

Autonomous agents-based security infrastructure  

Agent-based service management in large datacentres and grids  

Performance comparisons of basic openMP constructs  

Assignment schemes for replicated services in Jini  

Simulation of replicated services in Jini  

Multiparadigm communications in Java for grid computing  

JavaGrande - high performance computing with Java  

Java communications for large-scale parallel computing  

Message-passing computing with Java: performance evaluation and comparisons  

A mixed-language programming methodology for high performance Java computing  

Guest editorial: Java in high-performance computing  
Programming languages, models, and methods

Panel on Metacomputing

Aspects of portability and distributed execution for JNI-wrapped message passing libraries

MPJ: MPI-like message passing for Java

Obituaries: Roger Hockney

Design issues for efficient implementation of MPI in Java

Performance optimisations of the NPB FT kernel by special-purpose unroller

MPI and Java-MPI: contrasts and comparisons of low-level communication performance

Multi-language programming environments for high performance Java computing

A programming environment for high-performance computing in Java

MPI for Java

MPI for Java: position document and draft API specification

High-performance parallel programming in Java: exploiting native libraries

Low-level benchmarking: performance profiles

Towards portable message passing in Java: binding MPI

PMPI: high-level message passing in Fortran77 and C

Automatic binding of native scientific libraries to Java
Message-passing performance of parallel computers

Massively parallel computing in Java

Benchmarking the cache memory effect

The GENESIS distributed memory benchmarks. Part 2: COMMS1, TRANS1, FFT1 and QCD2 benchmarks on the suprenum and IPSC/860 computers

Performance characterisation of the cache memory effect

Benchmarking for distributed memory parallel systems: gaining insight from numbers

Comparison of HPF-like Systems


PARKBENCH Report - 1: Public international benchmarks for parallel computers

Performance visualisation in a portable parallel programming environment

Performance analysis of distributed applications by suitability functions

Comparative performance analysis of uniformly distributed applications

The GENESIS distributed memory benchmarks

The GENESIS benchmark suite: current state and results

The GENESIS benchmark suite manual. Release 2

The GENESIS distributed-memory benchmarks

The GENESIS distributed-memory benchmarks. Part 1: Methodology and general relativity benchmark with results for the SUPRENUM computer
Final report on benchmark suite

Mid-term report on benchmark suite

Benchmarking for MPP procurement. Mid-term report

1-Dimensional parallel FFT benchmark on SUPRENUM

Simulation facility of distributed memory system with 'mad postman' communication network

Evaluation facility for high-speed network systems

Architecture of a high-speed network interconnection unit

PERMALINK - https://westminsterresearch.westminster.ac.uk/item/8z792/characterizing-application-architecture-co-design-by-suitability-functions

Usage statistics

20 total views
0 total downloads
0 views this month
0 downloads this month

These values are for the period from September 2nd 2018, when this repository was created

Export as

DataCite

UNIVERSITY OF WESTMINSTER
309 Regent Street
What is mobile app architecture? It is a set of structural elements and their interfaces from which the system is composed, as well as their behavior in the framework of all structural elements. It can be said that this is the skeleton of a program, and the whole work of the mobile application is determined by its quality. By missing an important element in creating a mobile app architecture, you endanger the success of your project. The complexity of building high-quality architecture depends on the size of the application. The proper architecture will allow for saving a lot of time, energy. The original Application Architecture for .NET: Designing Applications and Services guide did a great job of covering this topic, but it was written in 2002. To deal with the many technology additions since then, J. D. Meier and his team from Microsoft patterns & practices have created a new application architecture guide to provide insightful guidance for designing .NET applications based on the latest practices and technologies. The outcome is Application Architecture Guide 2.0, a guide targeted to help solution architects and developers design effective applications on the .NET platform. Each tier/layer is described in terms of its focus, function, capabilities, common design patterns, and technologies.