Electro-optical Synergy in Aesthetic Medicine: Novel Technology, Multiple Applications

Neil S. Sadick, MD, FACP, FAACS

This article reviews a newly developed nonablative technology known as electro-optical synergy (ELOS). This new technology encompasses a unique blend of optical and electrical radiofrequency (RF) energies simultaneously applied to tissue. The rationale behind combining electrical and optical energies is 2-fold: (1) a synergistic effect occurs between the 2 forms of energy and (2) lower levels of both energies can be used, facilitating treatment for individuals of all skin types and hair colors and potentially reducing the risk of side effects associated with either optical or RF energy alone. ELOS technology has been evaluated for a number of clinical applications, including hair removal and leg vein removal, as well as treatment of all aspects of aging, from pigmented and vascular lesions to skin texture improvement and wrinkle reduction. Study results suggest that this technology is safe and effective. However, direct trials comparing the efficacy of the combined-energy technology with that of other laser- and light-based systems are still needed at this time.

Laser therapy is one of the fastest growing technologies in cosmetic dermatology. According to recent estimates from the American Society for Aesthetic Plastic Surgery, the total number of cosmetic procedures performed in the United States has increased by 293% since 1997 to a total of 8.3 million surgical and nonsurgical procedures in 2003.¹ Nonsurgical procedures, which include the subcategory of noninvasive laser devices, have increased by an astounding 471%.³ Currently, the number of options in noninvasive laser devices is overwhelming; cosmetic dermatologists can choose from more than 65 different laser systems for the treatment of a variety of cosmetic and medical skin conditions.

This article reviews electro-optical synergy (ELOS), a novel technology that encompasses a unique blend of optical and electrical radiofrequency (RF) energies simultaneously applied to tissue. Most cosmetic dermatologists are familiar with nonablative laser devices that use a single optical energy source to achieve selective photothermolysis.² However, directing optical energy to targets beneath the skin surface presents certain challenges. For example, light photons are scattered or absorbed by melanin on contact with the skin, and, as a result, only a variable proportion of photons actually reaches the target. Such variability necessitates providing higher energy for sufficient dermal heating thereby increasing the potential for epidermal complications (eg, crusting, dyschromia). The physician must consider a patient’s skin type, treatment site, and the optical wavelengths and pulse dosimetry of the laser system before performing any laser procedure.

Electrical RF energy has become an increasingly popular method for nonablative cosmetic treatment. This type

Dr. Sadick is Clinical Professor of Dermatology, Weill Medical College of Cornell University, New York, New York.

Dr. Sadick is a research consultant for Syneron Medical Ltd.
ELOS IN AESTHETIC MEDICINE

of energy interacts with tissue to produce heat. However, unlike optical energy, electrical RF energy produces heat from a current of ions rather than from absorption of photons. Thus, RF devices are dependent on the electrical conductivity of the target tissues to create selective thermal injury; RF energy is not scattered by tissue or absorbed by melanin, and RF devices have been reported to achieve dermal heating at a much greater depth of penetration than laser light devices. In addition, RF devices can heat or denature collagen and stimulate fibroblasts to form new collagen over time. Based on clinical experience, mild to severe pain (often requiring a topical anesthetic) has been a limiting factor of RF devices. Incidences of blistering, burns, and inflammatory nodules also have been observed in some patients.

The rationale behind combining electrical and optical energies is 2-fold: (1) a synergistic effect occurs between the 2 forms of energy and (2) lower levels of both energies can be used, facilitating treatment for all skin types and hair colors and potentially reducing the risk of side effects associated with either optical or RF energy alone.

SYNERGISTIC MECHANISM

The optical and electrical RF energies of ELOS act synergistically in the following manner. The light-based component converts optical energy to heat according to the principle of selective photothermolysis, and the bipolar RF component generates heat through a current of ions based on the electrical conductivity of the target tissue. It is well-known that electrical current will always follow the path of least resistance, a phenomenon known in physics as impedance. Impedance is directly proportional to heat; the warmer a structure is, the more it will attract electrical current (ie, higher heat = greater conductivity). This same principle of conductivity works in reverse. An area where cold is applied results in reduced conductivity in that area. In ELOS applications, the optical component is most often used to heat the target first to lower its resistance (impedance), constructing a preferred pathway for the electrical RF energy to concentrate at the target site. The RF energy then adds to the selective thermal heating of the target. The final component of ELOS-controlled heating is integrated contact cooling delivered by the handpiece. Precooling of the skin increases the impedance of the skin surface, providing protection and comfort. When combined with the correct selection of energies, precooling provides greater control and enhances the ability to direct therapeutic electrical current to a greater depth of penetration than light-based systems alone.

Based on the mechanisms described, the optimal treatment method of ELOS is precooling of the epidermis followed by a near simultaneous application of the optical and bipolar RF energies. Treatment steps are as follows: (1) hydrate and cool the epidermis; (2) apply optical energy to selectively heat the target and bipolar RF energy to provide additional thermal energy to the heated target (the temperature of the epidermis should not exceed the target temperature); and (3) discontinue optical pulse and continue RF pulse for additional selective heating of the target.

ELOS-BASED SYSTEMS

Two ELOS-based systems, the Aurora™ and Polaris™, are available to treat a number of clinical applications (Table). The Aurora system uses intense pulsed light (IPL) (400–980 nm, 580–980 nm, and 680–980 nm) for optical energy, whereas the Polaris system uses a high-power diode laser (900 nm) as its optical source. Both systems are comprised of a bipolar RF generator and optical light (broadband pulsed light or laser) delivered through a contact sapphire light guide, with bipolar RF energy delivered through electrodes embedded in the system applicator and brought into contact with the skin surface.

The bipolar RF component of ELOS systems is designed so that the 2 electrodes are laterally affixed on opposite sides of the rectangular sapphire light guide. Electrical current is passed between 2 electrodes and is limited by the area between the electrodes. The penetration depth of electrical current can be calculated as half the distance between electrodes. Because the distance between the Aurora handpiece electrodes is 8 mm, the depth of penetration for this handpiece applicator would be 4 mm. Pulses of optical and RF energies are initiated at approximately the same time for both systems; however, in the Aurora system, the bipolar RF pulse is set at a longer duration than the optical pulse, enabling the optical component to preheat the target and increase RF selectivity.

ELOS systems also include an active dermal monitoring system that measures changes in skin impedance. The user can adjust the system to provide an integrated safety mechanism (Impedance Safety Limit) that can prevent overheating of the dermis. The thermolectric integrated contact cooling maintains a temperature of approximately 5°C before, during, and after energy delivery.

CLINICAL APPLICATIONS

There are multiple potential uses of ELOS, including hair removal, reversal of photoaging, treatment of vascular and pigmented lesions, skin texture improvement, and wrinkle reduction. As with all cosmetic procedures, the cosmetic dermatologist must determine which type of treatment will best serve each patient depending on
individual conditions, needs, and history. Patients should be counseled on pre- and postprocedural care, as well as realistic expectations of the treatment potential. With ELOS systems, patients usually require 3 to 6 treatments for hair removal or skin rejuvenation. As with laser light therapy, a level of patient commitment is required before effects are observed, and patients must be informed of potential side effects.

Skin Rejuvenation
Skin rejuvenation involves reducing the signs of aging and photodamage and toning, smoothing, and evening out skin imperfections of all varieties. Nonablative photorejuvenation with laser light sources has become popular because it is minimally invasive, is associated with few complications, and requires little recovery time. The goal of nonablative photorejuvenation is to induce subsurface remodeling without ablating the overlying epidermis. Depending on the system specifications and selection of targets, some systems can be more effective than others. For example, the optical wavelengths that target melanin are most effective for treating pigmented lesions but at the same time may cause more complications in darker skin types. Although nonablative photorejuvenation is effective in reversing photodamage and treating fine lines and superficial defects, its efficacy in treating deeper wrinkles is limited.

The Aurora SR system is specifically indicated for skin rejuvenation. A clinical trial by Bitter and Mulholland evaluated this system for skin rejuvenation in 100 subjects. Subjects with Fitzpatrick skin types II to IV received treatment on the face and upper neck. Each treatment consisted of 1 to 3 passes over the face using a pulsed light fluence of 28 to 34 J/cm² and an RF current of 20 J/cm³. Improvements were observed in erythema and telangiectasias (70%) and in lentigines and other pigmented dyschromias (78%). In addition, both physicians and patients observed notable improvements in mild to moderate perioral, periocular, and forehead wrinkles. Mean improvement in skin texture and fine lines was 60%. Based on their clinical experience, Bitter and Mulholland noted that treatment for wrinkle reduction with the Aurora SR system appeared to provide greater efficacy than IPL alone. Moreover, subjects who had previously undergone treatment with IPL reported a preference for the combined optical and RF procedure because it resulted in a greater degree of skin improvement, more rapid onset of effect, and less

ELOS Technologies: Specifications of Aurora and Polaris Systems*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Aurora</th>
<th>Polaris</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical applications</td>
<td>Acne</td>
<td>Wrinkle reduction</td>
</tr>
<tr>
<td></td>
<td>Skin rejuvenation</td>
<td>Hair removal</td>
</tr>
<tr>
<td></td>
<td>Hair removal</td>
<td>Leg vein/vascular lesion treatment</td>
</tr>
<tr>
<td>RF energy</td>
<td>5–25 J/cm²</td>
<td>Up to 100 J/cm³</td>
</tr>
<tr>
<td>Laser type</td>
<td>IPL</td>
<td>900-nm diode laser</td>
</tr>
<tr>
<td>Setting</td>
<td>480–980 nm (acne)</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>580–980 nm (skin rejuvenation)</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>680–980 nm (hair removal)</td>
<td>NA</td>
</tr>
<tr>
<td>Fluence</td>
<td>10–45 J/cm²</td>
<td>Up to 50 J/cm² (wrinkle reduction)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Up to 140 J/cm² (leg vein/vascular lesion treatment)</td>
</tr>
<tr>
<td>Cooling on skin surface</td>
<td>5°C–20°C</td>
<td>5°C</td>
</tr>
<tr>
<td>Spot size</td>
<td>12×25 mm</td>
<td>8×12 mm</td>
</tr>
<tr>
<td>Pulse repetition rate</td>
<td>0.7 pps</td>
<td>Up to 2 pps</td>
</tr>
</tbody>
</table>

*ELOS indicates electro-optical synergy; RF, radiofrequency; IPL, intense pulsed light; NA, not available; pps, pulse per second.
discomfort. In most subjects, pigmented lesions crusted one day after treatment. Only a small percentage of sub-
jects (2.8%) were dissatisfied with the level of skin tex-
ture improvement after treatment with the Aurora SR system.12

Hair Removal
Laser light devices have been used effectively for hair removal.13-16 Based on the theory of selective photother-
molysis, lasers and IPL sources with wavelengths in the
visible to near-infrared region are the most effective for
hair removal because they preferentially target melanin in
the hair shaft.17 Within certain restrictions, most laser
and IPL systems provide a degree of effective removal of
dark hair on light skin. However, individuals with darker
skin (Fitzpatrick skin types IV–VI) or tanned skin have a
higher risk of blistering and undesirable pigmentation
changes after laser light treatment because of the high
concentration of melanin chromophores in the epider-
mis.18,19 Individuals with light-colored hair (ie, red,
white, gray, or blond) are difficult to treat for hair removal
because of low levels of melanin in the hair shaft, which
fails to absorb enough optical energy to achieve selective
thermal destruction of the follicle. ELOS systems may
help to overcome these difficulties. The RF energy in
ELOS systems is not dependent on melanin absorption
and can be used with lower levels of optical energy, which
enables their use in patients with dark skin or light-
colored hair. The theory is that the light is first absorbed
and heats the hair shaft, while the additional conducted
RF energy selectively heats the hair follicle.

I have conducted 2 studies evaluating the efficacy of
the Aurora DS system for hair removal. The first study
was comprised of 40 adult subjects aged 18 to 46 years
with Fitzpatrick skin types II to V and various hair col-
ors.20 The second study was comprised of 36 adult
women aged 38 to 83 years with overall lighter skin phe-
notypes (Fitzpatrick skin types I–V) and blond or white
facial hair.21 In both studies, subjects received 3 to
4 treatments at 8- to 12-week intervals over a period of
9 to 12 months. Depending on skin and hair phenotypes,
light energy ranged from 15 to 30 J/cm²; higher optical
energy was used in subjects with lighter skin phenotypes
and hair color. The RF current ranged from 10 to
20 J/cm³ depending on the treatment site; higher RF
energy was used on facial regions than lower body
regions. Results for both studies were monitored
18 months after the first treatment or 6 months after the
last treatment.20,21

In both studies, maximum hair reduction occurred 6 to
8 weeks after the first treatment, and hair density decreased
progressively after each subsequent treatment.20,21

Hair removal was greater in subjects with dark hair
(mean clearance, 80%-85%),20,21 which is similar to
results achieved using laser light sources.22 In both studies,
up to 60% hair clearance was reported in subjects with
light hair phenotypes. Results from both studies showed
no significant relationship between treatment response and
skin color. Side effects, including mild erythema and
hyperpigmentation, were minimal.20,21 Because the Aurora
DS system is not dependent on chromophore targeting, it
is hypothesized that its mechanism of action for hair
removal may be based more on the thermal damage
induced by the RF than the optical component.

Leg Vein Treatment
Until recently, laser therapy for the treatment of leg veins
was restricted to vessels smaller than 1.2 mm in diameter
because of limited depth of penetration.23 Laser light
sources in the visible-light wavelengths are appropriate
for treating superficial small-diameter leg telangiecta-
sias.24-26 Deeper penetrating infrared wavelengths have
enabled effective clearance of veins up to 3 mm in diam-
eter.27,28 For effective leg vein removal, laser light energy
levels must be high enough to enable absorption by
intravascular hemoglobin. The resulting heat coagulates
or clots the blood, and vein destruction occurs.

With ELOS technology, the 900-nm optical energy
penetrates the dermis and is absorbed by intravascular
hemoglobin. This energy is converted into heat, and
blood vessel temperature subsequently rises, creating a
preferential path of conductivity through the vessel.
Blood has very high electrical conductivity, and increased
conductivity correlates with higher temperatures. Thus,
the RF energy in ELOS systems is preferentially absorbed
by the target vessel because of the increased temperatures
of the target tissue (produced by the laser), as well as the
high electrical conductivity of the blood. Through
the heat created by both the diode laser and RF current,
the blood vessel is able to reach a sufficient temperature
level to cause irreversible vessel shrinkage or destruction.

Chess29 investigated the use of the Polaris LV for the
treatment of leg veins with vessel diameters ranging from
0.3 to 5.0 mm. The study enrolled 25 female subjects
(Fitzpatrick skin types I–IV) with a total of 35 sites.
Energy settings were determined based on skin type and
were increased until a vessel reaction was observed. The
initial optical energy (900-nm diode laser) used in this
study ranged from 80 to 120 J/cm². Higher energy levels
were used in subjects with lighter skin types. RF energy
settings ranged from 80 to 100 J/cm³. Subjects received
up to 3 treatments at 4- to 10-week intervals. At follow-
up visits 1 month and 6 months after the final treatment,
approximately 77% of treatment sites exhibited 75% to
100% vessel clearance; 13% of treatment sites exhibited 50% to 74% vessel clearance; and 10% of treatment sites exhibited 25% to 49% vessel clearance. In this study, up to 140 J/cm² of laser energy and 100 J/cm³ of conducted RF energy, with pulses in the range of 100 to 300 milliseconds, resulted in substantial clearance of both small and large vessels (0.3–5.0 mm in diameter). Side effects included discomfort at the treatment site, dysesthesia (at 1 site), and eschars (at 3 sites).²⁰

In a recently completed study of 50 patients who received leg vein treatment (vessel diameter between 1 and 4 mm) with the Polaris LV, preliminary assessment of results showed that most patients had good to excellent improvement in leg vein reduction.³⁰

COMMENT

I have treated more than 1000 patients for a variety of clinical applications, including skin rejuvenation, hair removal, and leg veins, using ELOS technology systems. Based on my experience, the ELOS systems are effective, safe, and user-friendly. Integration of electrical RF and optical energies indicates that the ELOS systems do not rely on a single form of energy to achieve sufficient heating of the target site. The rationale behind a combination system such as ELOS is that there is a synergistic interaction between the 2 forms of energy. The optical component selectively preheats the target through selective photothermolysis, and the RF energy is driven to the target site by the electrical conductivity of the target tissue, as well as the increased conductivity generated from the optical preheating. Importantly, RF energy is not scattered by tissue or absorbed by melanin. ELOS technology overcomes the primary limitation of purely light-based treatments because it can be used on all skin types. In addition, with current light-based systems, the cosmetic dermatologist must rely on clinical judgment to determine if the skin is overheating during the procedure, and, in many cases, the patient may show no discomfort or excessive erythema during treatment. The active dermal monitoring system on ELOS devices helps to safeguard against overheating of the skin. Also, the combination of energies allows lower levels of RF and optical energies to be used, potentially reducing the risk of side effects. Minimal pain is associated with ELOS treatment, and I have observed side effects such as blistering and erythema.

Two ELOS-based systems (Aurora and Polaris) are available worldwide. The Aurora system uses pulsed light energy (wavelengths include 400–980 nm for acne treatment, 580–980 nm for skin rejuvenation, and 680–980 nm for hair removal). The RF component has a frequency of 1 MHz for all systems and applications. The diode laser of the Polaris system is set at 900 nm, producing optical energy up to 140 J/cm² and RF energy up to 100 J/cm³. The Polaris LV system can be used to treat vascular lesions and veins that are 0.3 to 4.0 mm in diameter. In contrast, the maximum RF energy of the Aurora system is 25 J/cm³, with pulsed light maximum energy of 25 J/cm², restricting predictable therapeutic benefit to vascular lesions and veins smaller than 1.0 mm in diameter.

Further studies are under way to determine optimal treatment parameters and techniques for the ELOS systems. Comparative studies have been conducted to demonstrate the benefit and safety of combining RF and optical energy over either energy alone. However, these studies were not done in North America and have not been published. Studies are currently being conducted in North America and will be published when completed (oral communication, Shimon Eckhouse, October 2004).

REFERENCES

Technology and medicine have gone hand in hand for many years. Consistent advances in pharmaceuticals and the medical field have saved millions of lives and improved many others. As the years pass by and technology continues to improve, there is no telling what advances will come next. Here are the top 10 new medical technologies in 2019:

10. Smart inhalers. Inhalers are the main treatment option for asthma and if taken correctly, will be effective for 90% of patients.

Electro-optical Synergy in Aesthetic Medicine: Novel Technology, Multiple Applications. Article. Full-text available. Mar 2005. Neil S Sadick. This article reviews a newly developed nonablative technology known as electro-optical synergy (ELOS). This new technology encompasses a unique blend of optical and electrical radiofrequency (RF) energies simultaneously applied to tissue. This medical sector continues to evolve through its relevance to the ever-expanding aesthetic and aging population. View. Show abstract.