
Reviewed by N Clark (Dept of Civil Eng, Eng, and Mineral Resources, West Virginia Univ, 125 Eng Sci, PO Box 6106, Morgantown WV 26506-6106).

The existence of bubbles and drops is predicated on the presence of interfacial tension, but their motion is more often than not caused by gravity. The authors have teamed up to produce this book that examines the behavior of bubbles and drops without influence of the earth’s pull. The authors observe that bubbles and drops are frequently encountered in spacecraft
laboratory experiments with which they have direct experience. Although this...
Related Proceedings Papers

Understanding High Heat Transfer in Spray Cooling for Different Droplet Velocities and Wall Superheats by 3D Multiphase Flow Modeling
HT2007

On the Kinetics of Formation of Hollow Poly(Lactic Acid) Microcapsules Fabricated From Microbubble Templates
ICNMM2012

Large Interface Simulation in Multiphase Flow Phenomena
ICONE14

Related Chapters

Nucleation of Bubbles in Perfluoropentane Droplets Under Ultrasonic Excitation
Proceedings of the 10th International Symposium on Cavitation (CAV2018)

Numerical Simulation of Nucleate Spray Cooling: Effect of Droplet Impact on Bubble Growth and Heat Transfer in a Thin Liquid Film

Pin Floating on Surface of a Liquid
Case Studies in Fluid Mechanics with Sensitivities to Governing Variables
There is special emphasis on motion under reduced gravity conditions such as those prevailing aboard orbiting spacecraft. Discover the world’s research, 17+ million members. The motion of drops and bubbles due to interfacial tension gradients is studied. It is noted that, when a drop or bubble is inserted into a fluid possessing a temperature gradient, the resulting gradient of interfacial tension will, through viscous traction on the neighboring fluid, cause it to move. In response, the drop will propel itself in the direction of the pole with the lower interfacial. This monograph presents a detailed discussion of the research on the subject of the motion of bubbles and drops driven by interfacial tension gradients approximately up to the year 2001, with particular emphasis on motion under reduced gravity conditions, such as those prevailing aboard orbiting spacecraft. When a drop or bubble is placed in another fluid and subjected to the action of a temperature gradient, the drop will move. Such motion is a direct consequence of the variation of interfacial tension with temperature, and is termed thermocapillary migration. This paper discusses results from experiments conducted in reduced gravity on the thermocapillary motion of bubbles and drops. Read more. Article.