Towards a Deadline-Based Simulation Experimentation Framework using Micro-Services Auto-Scaling Approach

Enabling Cloud-based Computational Fluid Dynamics with a Platform-as-a-Service Solution

MiCADO -Microservice-based Cloud Application-level Dynamic Orchestrator

Automated Scalability of Cloud Services and Jobs

The CloudSME One-stop-shop – European Marketplace for HPC supported Simulation

AutoDock gateway for user friendly execution of molecular docking simulations in cloud systems

Cloud Computing for Simulation in Manufacturing and Engineering: Introducing the CloudSME Simulation Platform

Developing a Cloud Computing Based Platform for Simulation in Manufacturing and Engineering

Cloudsme Project Opens New Gateway to HPC Support for Simulation Software

A tutorial on cloud computing for agent-based modeling and simulation with Repast

Enabling Scientific Workflow Sharing through Coarse-Grained Interoperability

Commercial Use of WS-PGRADE/gUSE

WS-PGRADE/gUSE in European Projects

Developing Science Gateways at Various Levels of Granularity Using WS-PGRADE/gUSE
Developing science gateways at various levels of granularity using WS-PGRADE/gUSE in science gateways for distributed computing infrastructures

Kiss, T., Terstyanszky, G., Borsody, P., Kacsuk, P. and Balasko, A. 2014. Developing science gateways at various levels of granularity using WS-PGRADE/gUSE in science gateways for distributed computing infrastructures. in: Kacsuk, P. (ed.) Development framework and exploitation by scientific user communities Springer. pp. 111-122

Buttressing volatile desktop grids with cloud resources within a reconfigurable environment service for workflow orchestration

Towards a volunteer cloud system

The Demand for Consistent Web-Based Workflow Editors

Virtual appliance size optimization with active fault injection

Evaluation of hierarchical desktop grid scheduling algorithms

Semi-shared storage subsystem for OpenNebula

Using private desktop grid system for accelerating drug discovery

Towards a powerful European DCI based on desktop grids

P-GRADE portal: a generic workflow system to support user communities

An approach for virtual appliance distribution for service deployment

P-GRADE portal family for grid infrastructures

Special issue. Portals for life sciences: providing intuitive access to bioinformatic tools

Grid application meta-repository system: repository interconnectivity and cross-domain application usage in distributed computing environments

Scientific workflow makespan reduction through cloud augmented desktop grids

FCM: an architecture for integrating IaaS cloud systems

Workers in the clouds

Enabling JChem on the grid

Porting computation and data intensive applications to distributed computing infrastructures incorporating desktop grids

Gridifying the TINKER conformer generator application for gLite grid

Multi-level brokering solution for interoperating service and desktop grids

How to make BOINC-based desktop grids even more popular?

Granular security for a science gateway in structural bioinformatics

GMBS: a new middleware service for making grids interoperable

Special Section: DAPSYS, workshop on distributed and parallel systems

Application and middleware transparent checkpointing with TCKPT on clustergrids

From grid islands to a world wide grid

Efficient partitioning of graphs in collaborative workflow editor systems

Efficient graph partitioning algorithms for collaborative grid workflow developer environments

Sandboxing for desktop grids using virtualization

SZTAKI desktop grid: adapting clusters for desktop grids
The Swedish computing infrastructure

Virtual appliances: a way to provide automatic service deployment

Extending service grids with desktop grids

Extending the EGEE grid with XtremWeb-HEP desktop grids

Job scheduling in hierarchical desktop grids

Interoperation of world-wide production e-science infrastructures

Integrating Open Grid Services Architecture Data Access and Integration with computational Grid workflows

Grid interoperability solutions in grid resource management

Adapted quality resource selection using the Grid reputation-policy trust management service

EDGeS: bridging EGEE to BOINC and XtremWeb

Maintaining consistency properties of grid workflows in collaborative editing systems

Parallel program execution support in the JGrid system

Fault detection, prevention and recovery in current grid workflow systems

GenWrapper: A generic wrapper for running legacy applications on desktop grids

Porting applications to a combined desktop Grid/service Grid platform using the EDGeS application development parallel & distributed processing. IPDPS 2009 IEEE . pp. 1-6

Grid interoperability by multiple broker utilization and meta-brokering

SZTAKI desktop grid (SZDG): a flexible and scalable desktop grid system

Monitoring the EDGeS project infrastructure

EDGeS, the common boundary between service and desktop grids

Special Section: Grid-enabling legacy applications and supporting end users

Solving the grid interoperability problem by P-GRADE portal at workflow level

Subjective trust based decision strategies utilizing the Grid reputation-policy trust management service

Reputation-policy trust model for grid resource selection

Implementation of the ABC quantum mechanical reactive scattering program on the EGEE grid platform

A checkpointing mechanism for the Grid environment

Checking point of parallel applications in a grid environment

SZTAKI desktop grid: building a scalable, secure platform for desktop grid computing

Enabling Java applications for BOINC with DC-API

EDGeS: integrating EGEE with desktop grids
Lovas, R., Kacsuk, P. and Lodygensky, O. 2008. EDGeS: integrating EGEE with desktop grids. 3rd EGEE User Forum. Clermont-Ferrand, France

A general and scalable solution for heterogeneous workflow invocation and nesting

Utilizing heterogeneous data sources in computational grid workflows
Towards Grid data interoperation: OGSA-DAI data resources in computational Grid workflows

Workflow level interoperation of grid data resources
8th IEEE International Symposium on Cluster Computing and the Grid IEEE. pp. 194-201

Meta-broker for future generation grids: a new approach for a high-level interoperable resource management

Automatic service deployment using virtualisation

Virtual appliances: a way to provide automatic service deployment

Supporting dynamic parameter sweep applications in workflows: lessons learnt from the CancerGrid project

Can we connect existing production grids into a world wide grid?

WS-UPGRADE: supporting parameter sweep applications in workflows

Towards making BOINC and EGEE interoperable

EDGeS: a bridge between desktop grids and service grids

Utilizing the EGEE infrastructure for desktop grids

EDGeS: bridging desktop and service grids

Sztaki desktop grid: distributed computing in Hungary

EDGeS: the common boundary between service and desktop grids

Towards a scientific workflow-oriented computational World Wide Grid

Meta-Broker ing requirements and research directions in state-of-the-art Grid Resource Management
Fault-tolerant behavior in state-of-the-art grid workflow management systems

SZTAKI desktop grid: building a scalable, secure platform for desktop grid computing

GRID superscalar enabled P-RAGE portal

Correctness debugging of message passing programs using model verification techniques

User oriented grid testing

Utilising different data sources in computational grid workflows

SRB data resources in computational grid workflows

Brokering multi-grid workflows in the P-RAGE portal

Grid meta-broker architecture: towards an interoperable grid resource brokering service

Grid interoperability by multiple broker utilization and meta-brokering

Automatic service deployment using virtualisation

Simulation of the EMMIL e-marketplace model in see-grid using the P-grade portal

Supporting workflow-level parameter study applications by the P-RAGE grid portal

Workflow-level parameter study support for production grids

Extending the services and sites of production grids by the support of advanced portals

Supporting MPI applications in P-RAGE portal

Legacy code support for service-oriented production grids

SZTAKI desktop grid: a modular and scalable way of building large computing grids

LCG-2 RB support in the P-GRADE portal

Legacy code support for commercial production grids

User support for next generation production grids

Service-oriented production grids and user support

Hidden access mechanism for demonstrating and teaching grid

Executing parameter study workflows in the P-Grade portal

Air pollution forecast on the HUNGRID infrastructure

Solving grid interoperability between 2nd and 3rd generation grids by the integrated P-GRADE/GEMCLA portal

Multi-grid brokering with the P-GRADE portal

A taxonomy of grid resource brokers

Multiple broker support by grid portals

Legacy code repository with broker-based job execution

Defining and running parametric study workflow applications by the P-GRADE portal
Defining and running parametric study workflow applications by the P-GRADE portal

Scalable desktop grid system

Sztaki desktop grid: a hierarchical desktop grid system

Solving the grid interoperability problem by P-GRADE portal at workflow level

User friendly environment to grid enabled legacy codes

Workflow-level parameter study management in multi-grid environments by the P-GRADE portal

Grid interoperability by P-GRADE grid portal

Dynamic testing of legacy code resources on the grid

Multi-grid, multi-user workflows in the P-GRADE grid portal

Legacy code support for production grids

GEMLCA: running legacy code applications as grid services

Scalable desktop grid system

Deployment and interoperability of legacy code services

Security mechanisms for legacy code applications in GT3 environment

Executing workflow-based grid applications with the collaborative P-GRADE portal

Workflow-oriented collaborative grid portals

Collaborative workflow editing in the P-Grade portal

Legacy code support for production grids

Integration of GEMLCA and the P-GRADE portal

Automatic deployment and interoperability of grid services

Experiences with deploying legacy code applications as grid services using GEMLCA

Connecting the P-GRADE portal with the MDS-2 Grid Information System

Towards integration of legacy code deployment approaches

A migration framework for executing parallel programs in the grid

Deploying application on a GT3 Grid

High-level grid application environment to use legacy codes as OGSA grid services

A high-level grid application environment to grid-enable legacy code

Creating scalable traffic simulation on clusters

Experiences with publishing and executing parallel legacy code using an OGSI grid service

GEMLCA: grid execution management for legacy code architecture design
P-GRADE: a grid programming environment

Demonstration of P-GRADE job-mode for the Grid

Using clusters for traffic simulation

Urban traffic simulation based on cluster computing

Simulation of urban transport based on cluster computing

A distributed approach for intelligent reconfiguration of wireless mobile networks

Semi-on-line monitoring of P-GRADE applications

Enabling technologies for the CAST intelligent reconfigurable mobile radio network

Parallel program development for cluster computing: methodology, tools and integrated environments

Panel on Metacomputing

Case studies in performance modelling and simulation of client/server systems

Software engineering for parallel processing

Software engineering for parallel processing

PERMALINK - https://westminsterresearch.westminster.ac.uk/item/92xx4/portal-in-the-see-grid
The CSS Grid Layout Module offers a grid-based layout system, with rows and columns, making it easier to design web pages without having to use floats and positioning. Browser Support. The grid properties are supported in all modern browsers. Grid Elements. A grid layout consists of a parent element, with one or more child elements. Example.

1
2
3
4
5
6. SEE-GRID-SCI project has continued to operate and further extend, develop and improve this infrastructure, with the aim to cater for the needs of all activated user communities in the region, with special emphasis on the three identified target areas: meteorology, seismology, and environmental sciences. Apart from computing and storage resources made available to these user communities,
SAI activity provided and maintained a set of existing and new operational and monitoring tools so as to ensure proper operation of the infrastructure, and a set of primary and secondary core services for all de As a Nano-Grid Owner I want to register a nano grid So that I can service nano grid users GIVEN One Nano Grid is configured in the portal WHEN I access the portal main page THEN I see a list with one grid displaying AND the grid as the f... Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community. Pick a username. Email Address.