SCINTILLATION CAMERA LUNG IMAGING: AN ANATOMIC ATLAS AND GUIDE
Charles H. Mandell, Grune & Stratton, New York, NY, 1976, $28.00

The goal of this book is to aid the physician in the interpretation of scintillation camera images of the lung. One of its most novel features is a series of images of lung models in which lesions of various segmental arteries are viewed in six projections (anterior, posterior, both laterals, and both posterior obliques), both as "cold" and "hot" lesions.

Properly studied and compared with actual cases, these images should be helpful learning aids. A second desirable feature is the emphasis on and examples of the use of posterior oblique views, which are becoming more and more routine throughout the field of nuclear medicine.

A weakness of the book is too little emphasis on Xenon-133 studies of regional ventilation, which are, in my opinion, the greatest aid in increasing the relative specificity of radioactive tracer studies in the differential diagnosis of different lung diseases. Also inadequately covered is the characteristic difference between posterior and anterior views in the supine patient with pleural effusion.

All in all, though, the concepts, photographs and text are useful. This book should help in this area of nuclear diagnostic medicine that is still difficult.

HENRY N. WAGNER, JR., M.D.
The Johns Hopkins Medical Institutions
Baltimore, MD

THE BASIC PHYSICS OF RADIATION THERAPY (2nd Edition)
Joseph Selman, Springfield, IL, Charles C. Thomas, 1976, 715 pp, $25.75

This book should be welcomed by all involved in the training of radiation therapy technologists and radiation oncologists. It can serve as an accepted basic textbook for an introduction to radiation physics, treatment planning, radiation biology, and health physics.

As might be surmised, no text can cover all these topics in the detail needed by today's professional, but in 715 pages, Dr. Selman has presented most of the principles in an easy style that is reasonably free of ambiguity.

The book is a complete revision of the first edition and has included a more relevant coverage of external beam dosimetry, a better discussion of radiation protection, and an interesting account of the development of time-dose concepts.

On the negative side, too much effort remained on the use of orthovoltage equipment and too little on the use of linear accelerators. Some attention should have been given to the use of simulators and how to obtain an acceptable localization radiograph. A discourse on the role of treatment-planning computers would have been a worthy substitute for space given to diagnostic uses of radioisotopes. Lastly, more rigor should have been given to basic physics, such as the discussion of systems of units to better prepare the reader for handling the radiation physics relationships.

In a rapidly moving field such as radiation therapy, it is not possible for any comprehensive description to remain current, but Dr. Selman's book will remain a solid introduction to the field for several years to come.

R. DALE DEAN, Ph.D.
Radiation Oncology Department
Kansas University Medical Center
Kansas City, KS

ICRU REPORT 25 CONCEPTUAL BASIS FOR THIS DETERMINATION OF DOSE EQUIVALENT.

As the title implies, this report is the most recent of a series of reports dealing with radiation units and measurements. Report No. 25 is some 21 pages in length. As such, it constitutes a pamphlet or monograph rather than a book and it deals in precise terms with the concept of "dose equivalent" in five chapters plus three appendices.

The report is authored by a committee of the ICRU consisting of five persons well renowned for their work in this area: H. H. Rossi, (Chairman), D. Beninson, H. J. Dunster, B. Lindell, and H. O. Wyckoff.

Dose equivalent is the absorbed dose modified by a factor to include the magnitude or probability of biological effect. As such, it is claimed to be more relevant than the absorbed dose alone. After defining dose equivalent, the report deals with the various quantities involved and their interrelationships, and then with the application of these terms to the doses calculated for radiation protection purposes. The last section deals with the means by which the dose equivalent index may be measured. Three appendices are included to specify the hierarchy of radiation quantities, absorbed dose, and the effects of angular distribution of the incident radiation, respectively.

Like the other ICRU reports, this one is worded very carefully and concisely. Each sentence and paragraph is chosen such as to avoid ambiguity and no words are
Radiation therapy, however, uses doses of ionizing radiation with the express intent of killing cells in as controlled a manner as possible. To understand how radiation therapy works, it's important to know a few simple facts about cancer. UW Madison Medical Physics program had some research going at one time using something like you note where I want to say they were using IR Lasers with success. Basically, what I envision you are describing is another one of those methods that I’ve dreamed about since back up at Tech and younger using Quantitative Structural Activity Relationship site specific agents to bind to specific targets so to either as a chemotherapeutic agent destroy the undesired growth or use as a contrasting like agent to resolve out the detail of the. The intended audience for this book includes radiation oncology residents, radiation therapists, dosimetrist, physicists, medical students and other readers motivated to learn about the physics and biology of radiation therapy. The topics contained in this book are directly based on the ABR Radiation Oncology Study Guide that is available on the ABR website. Whereas the ABR Study Guides are formatted as a long list of topics, this book is organized into two equal parts. This book does not cite specific references, as it is a collection of basic rules and principles and not a rigorous scholastic work. Those who wish to delve into the primary literature should refer to one of the many comprehensive textbooks and research papers that already exist. Basic Physics. Delivery of Therapy. Effects of Irradiation. The therapeutic mechanism for radiation is based on the intrinsic ability of cells to repair damage and the ability of the radiation oncologist to take advantage of any geometric separation between malignant and nonmalignant tissues. Cell survival after exposure can be expressed in terms of a logarithmic curve of survival versus dose. The curve forms an initial shoulder followed by a logarithmic decline in survival, which varies with the dose (see the image below). Sublethal damage, which must be overcome with each fraction of radiation therapy, is thought to cause the initial shoulder. Radiat...